课程评价

课程简介

《数学分析》是普通高等学校数学类本科专业最重要的专业基础课程,在所有课程中,它最基础、课时最长、学分最多。《数学分析》是讲述函数(尤其连续函数)理论的最基本的课程,从某种意义上说,它是数学大厦的奠基石,它理所当然地被列为数学科学及相关学科最重要的基础课之一,在培养具有良好数学素养的人才方面,它所起的作用是任何其他课程无法比拟的。同时,由于《数学分析》是几乎所有后继数学课程的基础,又是新生入学后最先接触的专业基础课之一,所以,《数学分析》这门课程不仅要教会学生循序渐进地领会已抽象出来的普遍结论、掌握扎实的专业基础知识,更重要的是培养学生抽象的逻辑思维能力、使其切实掌握运用数学工具分析问题、转化问题、解决问题的思想和方法。可以说,《数学分析》课程的得失,将直接关系到数学专业教育的成败, 关系到学生后继课程的学习,甚至可能会影响他们一生的思维方式。

 数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

 早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,柯西(Cauchy)和后来的维尔斯特拉斯(Weierstrass)完善了作为理论基础的极限理论,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
 实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。


教学下载

教研获奖

荣誉证书