On Local Quadratic Convergence of Inexact Simplified Jacobi-Davidson Method

发布者:李莹发布时间:2017-09-19浏览次数:784

报告题目: On Local Quadratic Convergence of Inexact Simplified Jacobi-Davidson Method

报告人:白中治

报告时间:201792915:00-16:00

报告地点:数学学院A302

主办单位:中国矿业大学数学学院

报告摘要:

Abstract: For the Hermitian eigenproblems, we prove local quadratic convergence of the inexact simplified Jacobi-Davidson method when the involved relaxed correction equation is solved by a standard Krylov subspace iteration. This method then shows local cubic convergence rate when the relaxed correction equation is solved to a prescribed precision proportional to the norm of the current residual. As a by-product, we obtain local cubic convergence of the simplified Jacobi-Davidson method. These results significantly improve the existing ones that show only local linear convergence for the inexact simplified Jacobi-Davidson method, which lead to local quadratic convergence for the simplified Jacobi-Davidson method when the tolerance of the inexact solve is particularly set to be zero. Numerical experiments confirm these theoretical results.

  

  

  

  

  

  

  

白中治教授简介:

白中治, 中国科学院数学与系统科学研究院研究员,曾任科学与工程计算国家重点实验室副主任。获得国家杰出青年科学基金,入选新世纪百千万人才工程计划(国家级人选),获得中国计算数学冯康奖、国家教育委员会科学技术进步奖、中国科学院青年科学家奖二、三等奖等。国务院政府特殊津贴获得者,国际线性代数学会会员,中国线性代数专业委员会委员。主要从事线性与非线性数值代数,并行算法及其应用,数值最优化方法与理论,微分代数方程组的数值方法,数值偏微分方程等方面的研究。