江苏省应用数学(中国矿业大学)中心系列学术报告
报告题目:Global well-posedness for 3D two-fluids Euler–Maxwell system
报告人:黎野平 教授(南通大学)
报告时间:2024年6月5日(周三)上午10:00-11:00
报告地点:数学学院A310
主持人:刘兴兴
报告摘要:In this talk, I am going to present the initial value problem on the partially damped “two fluid” Euler–Maxwell equations in three dimensional periodic domain. Compared with the previous “two fluid” Euler–Maxwell results, our model describes two fluids obey different dynamical evolutions, one is compressible Euler and the other is compressible Euler with damping. The global existence of small smooth solutions near constant steady states is established and the time decay rates of perturbed solutions are obtained. The main challenge is to investigate the asymmetric system and find out the transmission mechanism of dissipation. Although there are various variables obeying different dynamical evolutions, we can still derive the unified time-weighted energy frame to achieve our goal. Our theorem in this report shows that partially damped “two fluid” Euler–Maxwell system (namely μ+= 0, μ−>0) also yields the global stability of a constant background. This is a joint work with Prof. Zhu Yi.
报告人简介:黎野平,南通大学理学院教授、博士研究生导师、湖北“楚天学者”特聘教授。先后在湖北大学、武汉大学和香港中文大学获教育学学士学位、理学硕士学位和博士学位。主要致力于非线性偏微分方程的研究,尤其是来自物理、材料、生物和医学等自然科学中的各类非线性偏微分方程和非线性耦合方程组。在《Mathematical Models and Methods in Applied Sciences》,《SIAM Journal of Mathematical Analysis》,《Calculus of Variations and Partial Differential Equations》,《Journal of Differential Equations》和《Communications in Mathematical Sciences》等国际、国内的重要学术期刊杂志上发表论文100余篇。同时,主持完成国家自然科学基金3项和教育部博士点博导专项、上海市教委创新项目以及江苏省自然科学基金等省部级科研项目10余项;现在正主持国家自然科学基金面上项目1项和参加国家自然科学基金重点项目1项。