Extensions of two semi-discrete integrable systems and their relations to orthogonal polynomials

发布者:吴敏发布时间:2024-07-08浏览次数:10

江苏省应用数学(中国矿业大学)中心系列学术报告

报告题目:Extensions of two semi-discrete integrable systems and their relations to orthogonal polynomials

报告人:陈晓敏(北京工业大学副教授)

报告时间:2024711日(周四)上午9:30-10:30

腾讯会议:会议ID353-389-564

主持人:田守富

报告摘要:In this talk, I will introduce our works on extensions of two semi-discrete integrable systems and further discuss their relations to orthogonal polynomials. First, we extend the Schur flow to a nonisospectral case and find its a Lax pair expressed in terms of the orthogonal polynomials on the unit circle. Then, we extend the molecule solution of the hungry Lotka-Volterra lattice to nonzero boundaries and present its relation to a set of symmetric (M,1)-biorthogonal polynomials. Our results are obtained by Hirota’s bilinear method and determinant techniques.

报告人简介:陈晓敏,2016年博士毕业于中国科学院数学与系统科学研究院,2016-2018年在德国马克斯普朗克动力学与自组织研究所做博士后。现为北京工业大学数学统计学与力学学院副教授,硕士生导师。主要从事可积系统与正交多项式方面的交叉研究,学术成果发表在国际知名期刊 Adv. Math., Nonlinearity, Numerical Algorithms, Physica DStudies in Applied Mathematics等上面,主持国家自然科学青年基金项目、北京市自然科学青年基金项目以及北京市教委科技一般项目各一项。