Integrable semi-discretizations for the modified Camassa-Holm equation

发布者:王丹丹发布时间:2021-09-26浏览次数:586

学术报告

 

报告题目:Integrable semi-discretizations for the modified Camassa-Holm equation

报告人:虞国富,上海交通大学教授、博士生导师

报告时间:202192810:00-11:00

腾讯会议:会议 ID807 792 100  

欢迎全校师生参加!

报告摘要:

In this talk, we first give determinant solution to the modified modified Camassa-Holm (mCH) equation based on the Hirota's bilinear method.   An integrable semi-discrete analogue  of the mCH equation is constructed. The keys of the construction are bilinear forms, determinant structure of solutions and periodic 2-reduction of tau-function.  N-soliton solutions of the continuous and semi-discrete modified Camassa–Holm equations are expressed in the form of Casorati determinants. In the continuous limit, we show that the semi-discrete mCH equation converges to the continuous version. This is a joint work with Bao-Feng Feng and Han-Han Sheng.

专家简介 

虞国富,上海交通大学教授、博士生导师。20076月博士毕业于中国科学院数学与系统科学研究院加拿大蒙特利尔大学博士后。现为上海交通大学数学科学学院教授、博士生导师。主要从事孤立子与可积系统、特殊函数、正交多项式方面的研究。在国外重要学术刊物上发表SCI论文30余篇。主持国家自然科学基金、上海市晨光计划、上海交通大学晨星青年学者奖励计划等多项研究课题。