Classifications of graphical m-semiregular representation of finite groups

发布者:王丹丹发布时间:2021-09-27浏览次数:536

报告题目:Classifications of graphical m-semiregular representation of finite groups

报告人:  冯衍全教授

报告时间:20211091630

报告地点:数学学院A302

报告人简介: 冯衍全,北京交通大学二级教授,多年来一直从事代数与组合、群与图以及网络理论研究。目前担任中国工业与应用数学学会常务理事、中国数学会理事、中国运筹学会图论组合学分会常务理事。2010年主持《图的对称性》获教育部自然科学二等奖,2011年获政府特殊津贴。被邀请到国外著名大学进行合作研究五十余次,多次在国内外重要学术会议上作大会邀请报告,多次组织国际学术会议,如2021年组织第8届欧洲数学家大会《群、图与网络》专题会议、20148月在北京交通大学组织国际数学家大会《组合与图论国际会议》卫星会议。主持完成国家自然科学基金、政府间科技合作、博士点基金等10余项,正在主持国家自然科学基金重点项目1项。共发表高水平科研成果100余篇,其中在组合顶级刊物JCTA/B12篇,图论顶级刊物JGT6, 代数组合顶级刊物JACO7篇,代数顶级刊物JA1篇,群论顶级刊物JGT2篇,欧洲组合EJC13篇等。2021年入选中国高被引学者榜单。代数图论顶级刊物JACO和重要刊物《Ars Mathematica Contemporanea》编委

 

报告摘要:A graph or digraph is called regular if each vertex has the same valency, or, the same out-valency and the same in-valency, respectively. Recently, we extend the classical notion of digraphical and graphical regular representation of a group.

A (di)graphical m-semiregular representation(respectively, GmSR and DmSR, for short) of a group G is a regular (di)graph whose automorphism group is isomorphic to G and acts semiregularly on the vertex set with m orbits. When m=1, this definition agrees with the classical notion of GRR and DRR. Finite groups admitting a D1SR were classified by Babai in 1980, and the analogue classification of finite groups admitting a G1SR was completed by Godsil in 1981. Pivoting on these two results, we classify finite groups admitting a GmSR or a DmSR (for arbitrary positive integers m) and also do some work about bipartite (di)graphs.