学术报告
题 目:The concentration of limiting invariant measure for stochastic dynamic system with local Lipschitz coefficients in 𝑅𝑑
报告人: 董昭 研究员中国科学院应用数学研究所
时 间: 2021年11月12日(周五)下午 4:30-5:30。
地 点: 腾讯会议 448 350 877
欢迎大家参加!
报告摘要: In this talk, I consider the zero-noise limit of the invariant measure 𝜇𝜀of the SDE defined on 𝑅𝑑with local Lipschitz coefficients and more than one ergodic state. Our result illustrates that, under some certain conditions, the 𝜇𝜀weakly converges to a linear combination of Dirac measure, which supports on some stable sets of the corresponding ODE. To make our result more intuitive, I will first give some numerical simulations of examples. Secondly, I will present the main results of our work with brief proofs, which are generalizations of the classic Freidlin-Wentzell theory. Finally, I will analyze the examples above theoretically. This talk is based on the joint work with Fan Gu and Liang Li.
报告人简介: 董昭,中国科学院应用数学研究所研究员,中国科学院大学岗位教授。董昭研究员主要从事狄氏型与马氏过程随机过程、随机微分方程理论研究,在随机流体力学方程和多遍历态的随机动力系统方面有很深入的研究。在国际期刊发表论文50余篇;主持国家自然科学基金重点项目1项、重大项目子项目1项,主持科技部国家重点研发计划资助子项目1项,参加重点和面上项目多项,和他人合作获得教育部自然科学奖二等奖。兼任北京航空航天大学教授、博士生导师。