题目:The closure property of the Schur complement for
Nekrasove matrices and its applications in solving large linear systems with Schur-based method
报告人:刘建州 教授单位: 湘潭大学 数学与计算科学学院
时 间:2021年11月24日(周三)下午 15:00-16:00
腾讯会议ID:125 752 225
报告人及报告内容简介:
刘建州,湘潭大学数学与计算科学学院二级教授、博士生导师。2016.1-2020.1任中国数学会常务理事,湖南省运筹学会副理事长,2005.1-2020.11任湖南省数学会常务理事、秘书长,现任湖南省运筹学会监事长,湖南省数学学会常务理事、监事。长期从事数值代数、线性代数及其应用,线性控制等方面的研究,主持国家自然科学基金4项、主持部、省级自然科学基金10余项,已培养毕业博士、硕士研究生80余人,在国内外重要学术期刊《SIMA J. Matrix Anal. Appl.》、《IEEE Transactions on Automatic Control》、《Linear Algebra Appl.》、《数学学报》、《数学年刊》等发表术论文190余篇,其中SCI期刊90余篇。先后获湖南省自然科学三等奖、湖南省高等教育教学成果二、三等奖,主编出版的一湖南省高等教育21世纪课程教材被评为湖南省高等学校优秀教材。
Abstract:
In this paper, several conditions are presented to keep the Schur complement via a non-leading principle submatrix of some special matrices including Nekrasov matrices being a Nekrasov matrix, which is useful in the Schur-based method for solving large linear equations. And we give some infifinity norm bounds for the inverse of Nekrasov matrices and its Schur complement to help measure whether the classical iterative methods are convergent or not. At last, in the applications of solving
large linear equations by Schur-based method, some numerical experiments are presented to show the effiffifficiency and superiority of our results.