Riemann theta function solutions to the semi-discrete Boussinesq equations

发布者:张译文发布时间:2025-04-18浏览次数:10

江苏省应用数学(中国矿业大学)中心系列学术报告

报告题目:Riemann theta function solutions to the semi-discrete Boussinesq equations

报告时间:2025422日  10:00-11:30

报告人:耿献国  郑州大学教授、博士生导师

报告地点:数学学院A302

报告摘要:

The hierarchy of the semi-discrete Boussinesq equations associated with a discrete 4×4 matrix spectral problem has been derived by means of the zero-curvature and the Lenard recursion equations. The tetragonal curve is introduced by resorting to the characteristic polynomial of the Lax matrix for the semi-discrete Boussinesq hierarchy, upon which the Baker-Akhiezer functions, meromorphic functions, Abel differentials, and Riemann theta functions are constructed. Finally, we derive the  Riemann theta function solutions to the semi-discrete Boussinesq hierarchy.

报告人简介:

耿献国,郑州大学数学与统计学院,二级教授,博士生导师,郑州大学特聘教授。国务院政府特殊津贴专家,全国百篇优秀博士学位论文指导老师。 从事的研究方向是可积系统及应用。曾在Commun. Math. Phys., Trans. Amer. Math. Soc., Adv. Math.SIAM J. Math. Anal., Int. Math. Res. Not. IMRN, J. Nonlinear Sci., Nonlinearity等刊物上发表论文。主持2项国家自然科学基金重点项目和多项国家自然科学基金面上项目等。获得河南省自然科学一等奖和河南省科学技术进步奖二等奖各一项。所带领的研究团队被评为河南省可积系统及应用研究创新型科技团队。