Sub-diffusive Black-Scholes model and Girsanov transform for sub-diffusions

发布者:刘茜茜发布时间:2025-07-02浏览次数:10

江苏省应用数学(中国矿业大学)中心系列学术报告

报告题目:Sub-diffusive Black-Scholes model and Girsanov transform for sub-diffusions

报 告 人:陈振庆 教授   华盛顿大学

报告时间:2025/7/2(周三) 15:30-16:30

报告地点:数学学院A321

报告摘要:We propose a novel Black-Scholes model under which the stock price processes are modeled by stochastic differential equations driven by a sub-diffusion. The new framework can capture the less financial activity phenomenon during the bear markets while having the classical Black-Scholes model as its special case. The sub-diffusive spot market is arbitrage-free but is in general incomplete. We investigate the pricing for European-style contingent claims under this new model. For this, we study Girsanov transform for sub-diffusions and use it to find risk-neutral probability measure for the new Black-Scholes model. Finally, we derive the explicit formula for the price of European call options and show that it can be determined by a partial differential equation involving fractional derivative in time, which we coin a time-fractional Black-Scholes PDE. Based on a joint work with Shuaiqi Zhang.


报告人简介:陈振庆,美国华盛顿大学 (西雅图) 数学系终身教授,分别于2007年和2014年当选为美国数理统计学会会士和美国数学学会会士。主要从事概率论及随机过程的研究,主要研究方向包括马尔可夫过程和狄氏空间理论、位势理论、随机微分方程、扩散过程、稳定过程以及偏微分方程中的概率方法等。现 () 担任国际著名期刊Potential Analysis的主编以及AOPAAPSPAEJPJTPPAMS等期刊编委,2019年荣获伊藤奖(lto Prize)。出版专著一部,在JEMSMAMSMath.Ann.Adv. Math..CMPAOPPTRFTAMSJFA等顶尖期刊发表论文近200篇。