学 术 报 告
题目:Computational Conformal Geometry with Applications
报告人:李铁香 教授单位: 东南大学 数学学院
时 间:2022年3月19日(周六)下午 15:00-16:00
腾讯会议:763-610-813
报告内容简介:
Abstract: Manifold parameterization is one of the fundamental operations in computer graphics and has been widely used in digital geometry processing tasks. Combined with it, computational optimal mass transport (OMT) has gradually become a hot spot in the field of artificial intelligence in recent years, especially in medical imaging and other aspects. In this work, we develop a series of novel algorithms for
computing spherical angle-preserving, spherical area-preserving, volume[1]preserving parameterizations of genus zero closed surfaces, respectively. We further develop area- and volume measure-preserving OMT algorithms for finding the optimal maps to transform an irregular 3D image into a regular 3D canonical domain, such as a ball, an ellipsoid, a cube or a cuboid, such that the transport cost is minimized and the local
mass ratios preserved. Applications of manifold partitions and data preprocessing for 3D brain tumor segmentation and surface registration are demonstrated thereafter to show the robustness of the proposed algorithms.
报告人简介
李铁香,东南大学教授,博士研究生导师,东南大学丘成桐中心主任助理,南京应用数学中心主任助理。主要研究方向为大规模矩阵计算及其应用、电磁场高效计算、三维计算共形几何及应用等。目前已经在 SIIMS、SIMAX、CPC、JCP、Inverse Problems等国际学术刊物发表学术论文50余篇,主持三项国家自然科学基金项目、以及国防创新特区项目等。2014年评为江苏省“青蓝工程”中青年学术带头人,获得了 2017 年和 2019 年世界华人数学家联盟最佳论文奖—“若琳奖”,2020年第三届江苏省工业与应用数学学会青年奖。