Continuous Modeling Perspective for Data Science

发布者:刘茜茜发布时间:2025-10-30浏览次数:10

专家报告

报告时间:20251031日上午900——1000

报告地点:数学学院A302

报 告 人:赵熙乐

报告题目:Continuous Modeling Perspective for Data Science

报告摘要:The regularizer, which incorporates prior knowledge of images, iscornerstone of  inverse imaging problem modelling. In this talkwe will first review the classical regularizers, including total variation regularizer, low-rank regularizer, and nonlocal regularizer. Then we will discuss the limitations of classical hand-crafted regularizers (e.g., expressive capability, applicability, and flexibility). To address the above limitations of classical regularizers, we suggest a unified Continuous Modeling Paradigm for imaging science, which continuously represents discrete data by elegantly leveraging a deep neural network. This paradigm allows us to deconstruct and reconstruct the classical regularizers readily. Extensive experiments demonstrate the promising performance of the continuous modeling perspective.

简介:赵熙乐,电子科技大学教授/博导,中国工业与应用数学学会副秘书长。入选国家高层次青年人才、四川省学术和技术带头人、四川省天府青城计划。第一/通讯在权威期刊SIAM 系列(SIIMSSISC)IEEE系列(TPAMITIPTSPTNNLS)及顶会CVPR等发表研究工作。研究成果获四川省自然科学一等奖、四川省科技进步一等奖、华为火花奖、计算数学会青年优秀论文竞赛二等奖。主持国自然面上项目、四川省杰出青年科学基金项目、华为项目。