The Ergodic Linear-Quadratic Optimal Control Problems for Stochastic Mean-Field Systems with Periodic Coefficients

发布者:刘茜茜发布时间:2025-12-08浏览次数:10

江苏省应用数学(中国矿业大学)中心系列学术报告

报告题目:The Ergodic Linear-Quadratic Optimal Control Problems for Stochastic Mean-Field Systems with Periodic Coefficients

报 告 人:张奇 教授   复旦大学

报告时间:2025/12/11(周四) 16:00-17:00

报告地点:数学学院A302

报告摘要:We concern with the ergodic linear-quadratic closed-loop optimal control problems, in which the state equation is the mean-field stochastic differential equation with periodic coefficients. We first study the asymptotic behavior of the solution to the state equation and get a family of periodic measures depending on time variables within a period from the convergence of transition probabilities. Then, with the help of periodic measures and periodic Riccati equations, we transform the ergodic cost functional on infinite horizon into an equivalent cost functional on a single periodic interval without limit, and present the closed-loop optimal controls for our concerned control system. Finally, an example is given to demonstrate the applications of our theoretical results. This is a joint work with Jiacheng Wu.

报告人简介:

张奇,理学博士,复旦大学数学科学学院教授,博士生导师,金融数学与控制科学系主任。2007年毕业于山东大学数学学院(与英国拉夫堡大学联合培养),2008年在拉夫堡大学从事博士后研究工作,同年入职复旦大学数学科学学院。主要研究领域为倒向随机微分方程、随机偏微分方程、随机控制理论。在SIAM J. Control Optim.J. Differential EquationsStochastic Process. Appl.J. Funct. Anal.等杂志发表论文30余篇。