Trajectorial version of the-gradient flow for nonlinear Fokker-Planck equations

发布者:刘茜茜发布时间:2025-12-12浏览次数:10

江苏省应用数学(中国矿业大学)中心系列学术报告


报告题目:Trajectorial version of the $W_h$-gradient flow for nonlinear Fokker-Planck equations

报 告 人:柳振鑫 教授

报告时间:2025/12/16(周二) 14:30-15:30

腾讯会议:5318371238

报告摘要:In this talk, we will introduce a trajectorial approach to the gradient flow of nonlinear Fokker-Planck equations. We first give the definitions of the generalized entropy and the modified Wasserstein metric $W_h$, which is adapted to the nonlinear setting. Then we establish the trajectorial version of the relative entropy dissipation identity by McKean-Vlasov SDEs. Averaging the energy dissipation of trajectories yields the free energy dissipation of nonlinear Fokker - Planck equations. Furthermore, leveraging properties of the tangent space of $(\mathcal{P}_2({\mathbb R }^d), W_h)$, we derive the $W_h$-gradient flow. As an illustrative example, we analyze the Fermi-Dirac-Fokker-Planck equation. We conclude with two questions motivated by numerical observations. This talk is based on the collaboration with Xuewei Wang.

报告人简介:柳振鑫,大连理工大学数学科学学院教授。主要从事随机动力系统的研究,在随机Conley指标理论、随机动力系统中的回复性和稳定性、Kolmogorov平稳分布极限问题、随机平均原理等方面做出系统深入的研究工作。目前已发表学术论文40余篇。2010年获全国百篇优秀博士学位论文提名奖;2015年获得国家优秀青年科学基金资助;2019年获得国家杰出青年科学基金资助。