On the stability threshold for rotating fluids near Couette flow

发布者:刘茜茜发布时间:2026-01-17浏览次数:10

江苏省应用数学(中国矿业大学)中心系列学术报告


报告题目:On the stability threshold for rotating fluids near Couette flow

报告摘要:In this talk, I shall introduce some results on the nonlinear stability for the incompressible rotating fluids in T×R×T near the Couette flow, by precisely quantifying the stability threshold at high Reynolds number. For the Navier-Stokes equations with rotation, we establish the nonlinear stability in the so-called Bradshaw Richardson stable regime \beta(\beta-1)>0 for initial velocity perturbations of size O(\nu) in H^{\sigma} with \sigma>9/2. For the rotating Boussinesq equations, we analyze the coupled system of the Couette flow and a stable temperature stratification 1+az (a>0). Nonlinear stability is also constructed, showing that the solutions do not transition away from the steady state, provided the initial perturbations of size O(\nu^{14/15}) . This talk is based on joint work with Wenting Huang (BNU), Zekai Luo (BNU) and Ying Sun (BUPT).

报 告 人:许孝精 教授 北京师范大学

报告时间:2026119日(周10:00-11:00

报告地点:数学学院 A302

报告人简介:许孝精,北京师范大学数学与科学学院教授、博导,主要研究来自流体力学中的偏微分方程(组)解的性质,这些方程包括Navier-Stokes方程、Boussinesq方程、MHD方程以及Quasi-geostrophic方程等,研究内容包括他们的适定性,渐近行为,爆破机制,稳定性阈值等。本硕博就读于吉林大学数学学院,随后于北京应用物理与计算数学研究所从事博士后研究,合作导师苗长兴研究员。曾在法国、美国、波兰、加拿大、日本、香港等地区进行学术访问和交流。在《J. Math. Pures Appl.》、《Mathematiche Annalen》、《J. Funct. Anal.》、《SIAM J. Math. Anal.Journal of Nonlinear Science》等国际重要期刊以一作或通讯身份发表SCI学术论文70多篇;主持了国家青年基金和多项国家面上项目现任北京师范大学数学建模教育中心执行主任。