Global well-posedness of the 2D primitive equations with fractional horizontal dissipation

发布者:刘茜茜发布时间:2026-01-17浏览次数:10

江苏省应用数学(中国矿业大学)中心系列学术报告


报告题目:Global well-posedness of the 2D primitive equations with fractional horizontal dissipation

报告摘要:In this talk, we consider the two-dimensional incompressible primitive equations with fractional horizontal dissipation. We prove global well-posedness of strong solutions for arbitrarily large initial data when the dissipation exponent satisfies $\alpha\geq\alpha_{0}\approx1.1108$, thereby improving the global well-posedness range $\alpha \geq 6/5$ known for general initial data. In addition, for $\alpha \in [1,\alpha_0)$, including the critical case $\alpha = 1$, we obtain global well-posedness for small initial data. Notably, the smallness assumption is imposed only on the $L^\infty$ norm of the initial vorticity, while higher Sobolev norms of the initial data are allowed to be arbitrarily large. This is a joint work with Prof. Changhui Tan (University of South Carolina).

报 告 人:叶专教授 江苏师范大学

报告时间:2026119日(周11:00-12:00

报告地点:数学学院 A302

报告人简介:叶专,江苏师范大学副教授,硕士生导师,2016年获得北京师范大学理学博士学位。毕业至今任职于江苏师范大学,期间访问匹兹堡大学一年,美国《数学评论》评论员和德国《数学文摘》评论员,主要从事流体动力学方程适定性问题的研究。主持过1项国家青年科学基金和 1项江苏省青年科学基金,入选2020年度江苏省“青蓝工程”优秀青年骨干教师,部分论文发表在国际知名期刊《Mathematische Annalen》、《Journal de Mathématiques Pures et Appliquées.》、《Journal of Functional Analysis》、《Calculus of Variations and Partial Differential Equations》、《Journal of Differential Equations(12)、《Journal of Nonlinear Science(2)、《Nonlinearity(2)、《Pacific Journal of Mathematics(2)