报告题目:Multiplicity and concentration results for a magnetic Schrodinger equation with exponential critical growth in \mathbb{R}^{2}
报告人:姬超副教授
报告时间:2022/6/3 15:00-16:00
报告形式:腾讯会议
会议ID:495-822-611
会议密码:123456
报告摘要:In this talk, we are concerned with the following nonlinear magnetic Schr\{o}dinger equation
\begin{align*}
\Big(\frac{\varepsilon}{i}\nabla-A(x)\Big)^{2}u+V(x)u=f(|u|^{2})u,\quad x\in\mathbb{R}^{2},
\end{align*}
where $\varepsilon>0$ is a parameter, $V:\mathbb{R}^{2}\rightarrow \mathbb{R}$ and $A: \mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$ are continuous potentials and $f:\mathbb{R}\rightarrow \mathbb{R}$ has exponential critical growth. Under a local assumption and a global assumption on the potential $V$ respectively, we show multiplicity and concentration of solutions for $\varepsilon$ small. This is a joint work with Professor Pietro d'Avenia.
报告人简介:姬超,华东理工大学副教授,2009年于兰州大学获得博士学位,师从范先令教授。他的研究方向是非线性偏微分方程,变分和拓扑方法,在包括 Science China Mathematics, IMRN, IJM, CVPDE, JLMS, JDE, JGA, DCDS等国际知名刊物上发表SCI论文50篇。现主持国家自然科学基金面上项目和上海市自然科学基金各一项,现为《Mathematical Methods in the Applied Sciences》和《Discrete & Continuous Dynamical System-S》等多个国际刊物编委。