Soliton solution to the nonlocal NLS and coupled NLS equations with zero and nonzero boundary conditions

发布者:王丹丹发布时间:2022-06-13浏览次数:541

学术报告

 

报告题目: Soliton solution to the nonlocal NLS and coupled NLS equations with zero and nonzero boundary conditions

报告人:Baofeng Feng教授 University of Texas Rio Grande Valley大学)

报告时间:20226169:30-11:30 

腾讯会议:会议 ID367-735-769

欢迎全校师生参加!

报告摘要:We consider general soliton solution to a nonlocal nonlinear Schrodinger (NLS) equation and coupled NLS equation for both zero and nonzero boundary conditions. Based on the Kadomtsev-Petviashvili (KP) hierarchy reduction method, we firstly construct general N-soliton solution for zero boundary condition starting from the tau functions of the two-component KP hierarchy. Then, from the tau functions of the single component KP hierarchy, we construct general soliton solutions to the nonlocal NLS and coupled NLS equations with nonzero boundary conditions.

This is a joint work with Mark Ablowitz (University of Colorado, Boulder), Xudan Luo (Chinese Academy of Sciences) and Ziad Musslimani (Florida State Univ.).

报告人简介:冯宝峰教授早年毕业于清华大学获得应用物理学及应用数学双学士学位。后留学日本获得京都大学博士学位。现任德克萨斯大学大河谷分校数学与统计学院终身教授。冯宝峰教授从事应用数学特别是非线性科学方面的研究,在可积系统和孤立子理论方面提出了超快光脉冲传播的模型方程和可积格子自适应算法。冯宝峰教授获得2项美国国防部和4项美国自然科学基金共130多万美元的资助包括在研的1项美国空军项目和两项美国自然科学基金。2016年和2018年分别通过上海交通大学和清华大学获得中国自然科学基金海外及港澳学者合作基金的资助.