非线性分析系列报告
报告题目:Concentrated solutions to nonlinear Schrodinger equations with very degenerate potentials
报告人:彭双阶教授
报告时间:2022/8/18 14:30-15:30
报告形式:腾讯会议
会议ID:675-393-322
会议密码:123456
报告摘要:We talk about a type of singularly perturbed nonlinear Schrodinger equation with a potential and obtain a more accurate location for the concentrated points, the existence and the local uniqueness for positive multi-peak solutions when the potential possesses non-isolated critical points by using the modified finite dimensional reduction method based on local Pohozaev identities. Moreover, for several special potentials, with its critical point set being a low-dimensional ellipsoid, or a part of hyperboloid of one sheet or two sheets, we obtain the number and symmetry of multi-peak solutions by using local uniqueness of concentrated solutions. Here the main difficulty comes from the different degenerate rate along different directions at the critical points of the potential. This is a joint work with Peng Luo, Kefan Pan and Yang Zhou.
报告人简介:彭双阶教授现任华中师范大学党委常委、副校长、博士生导师。获国务院政府特殊津贴、国家杰出青年科学基金。为湖北省优秀学士学位论文、湖北省优秀博士学位论文指导教师,普通高中教科书《数学》(鄂教版,2017年新课标版)主编、《数学通讯》主编、数学期刊《Comm.Pure.Appl.Anal.》、《Abs.Appl.Anal.》编委、《数学物理学报》(中、英文版)常务编委、《应用数学学报》编委。彭双阶教授长期从事非线性偏微分方程、非线性泛函分析、奇异摄动理论等研究,在非线性偏微分方程、非线性泛函分析领域有很高的科研成就。彭双阶教授改进了数学家Lyapunov和Schmidt提出的经典的“约化”理论的应用框架,回答了数学家Weiming Ni在 Notice ams上提出的猜想;彻底解决了欧洲科学院院士A.Ambrosetti提出的猜想。彭双阶教授关于Schrodinger方程半经典态的研究成果被欧洲科学院院士A. Ambrosetti在其专著中作为定理介绍,相关成果被2010年国际数学家大会一小时报告人、芝加哥大学C. Kenig教授评价为“具有原创性”。科研成果获得教育部自然科学奖二等奖和湖北省自然科学奖一等奖,教学成果2次获国家级教学成果奖二等奖,3次获得湖北省高等学校教学成果奖一等奖。