Traveling pulse solutions of generalized Keller-Segel systems

发布者:王丹丹发布时间:2022-09-08浏览次数:371

报告题目:Traveling pulse solutions of  generalized Keller-Segel systems

时 间:99日下午4

地 点:数学学院B303

报告摘要:In this talk, we are concerned with the existence of traveling pulse solutions of generalized Keller-Segel systems with nonlinear chemical gradients and small cell diffusion by using the dynamical systems approach. We first analyze the dynamics of the system by geometric singular perturbation theory. And then we seek an invariant region for the associated traveling wave equation. Finally, we apply Poincare-Bendixson theorem to obtain the existence of traveling pulse solutions in this invariant region.

个人简介:杜增吉,江苏师范大学副校长、教授、博士生导师。中国数学会奇异摄动专业委员会副理事长,江苏省优秀教育工作者,江苏省“333高层次人才中青年科技领军人才,江苏省青蓝工程中青年学术带头人。研究方向为微分方程与动力系统、奇异摄动理论及其应用、生物数学等。在J. Funct. Anal.J. Nonlinear Sci., J. Differential Equations, J. Math. Biol. ,《中国科学数学》等数学期刊上发表论文80余篇。先后主持国家自然科学基金和省部级项目10余项,获得江苏省数学成就奖,江苏省优秀教学成果奖,山东省自然科学奖二等奖等