Global well-posedness for 3D incompressible inhomogeneous asymmetric fluids

发布者:王丹丹发布时间:2022-09-15浏览次数:358

2022 数学物理与分析

学术报告(南湖论坛)

报告题目:Global well-posedness for 3D incompressible inhomogeneous asymmetric fluids

报告人:潜陈印副教授

报告时间:2022/9/17(周六)10:00-11:00

报告形式:腾讯会议

会议ID531 837 1238

报告摘要:In this talk, we study the  3D inhomogeneous incompressible asymmetric fluids system in critical space in $R^3$. We first obtain the global well-posedness for the system with density-dependent viscosity in case the initial density  and velocity in the critical Besov spaces. Our goal is to remove the smallness assumption for density and such that the integration exponent of Besov spaces for velocity is optimal. This result corresponds to the celebrated Leray estimate on lifespan of strong solutions to the classical Navier-Stokes equations and the interesting results for 3D inhomogeneous incompressible Navier-Stokes equations by P.Zhang (Adv. Math.2020). This work is joint with Y.QuH. Chen and T. Zhang.

 

报告人简介:潜陈印浙江大学数学系副教授,现为浙江师范大学专任教师,数学系主任,硕士生导师。主要从事非线性偏微分方程研究。主持国家自然科学基金1项;中国科学技术部APEC国际合作项目1项;国家留学基金委留学基金项目1项;浙江省自然科学基金2项;浙江省交流项目1项。在际期刊上发表SCI 论文30 余篇。曾赴北京中国科学院晨兴数学中心、美国宾夕法尼亚州立大学、德国达姆斯塔特工业大学、法国马赛大学国际数学中心等国内外知名高校和研究机构进行学术访问,并多次在国内外学术会议中做学术报告。