Long-time asymptotic behavior for the matrix modified Korteweg--de Vries equation

发布者:王丹丹发布时间:2022-10-24浏览次数:452

学术报告

 

报告题目:  Long-time asymptotic behavior for the matrix modified Korteweg--de Vries equation

报告人:刘男教授 

报告时间:202211019:00-10:00

腾讯会议:会议 ID387-266-3917  

欢迎全校师生参加!

报告摘要:In this talk, I will introduce the long-time asymptotics of solution to the integrable matrix modified Korteweg--de Vries equation with a $4\times4$ Lax pair on the line in the case of decaying initial data. The study makes crucial use of the inverse scattering transform in the form of an associated $4\times4$ matrix Riemann--Hilbert problem, as well as of the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann--Hilbert problems. This is a joint work with Xiaodan Zhao and Boling Guo. 


报告人简介:刘男,南京信息工程大学副教授,近年来主要从事可积系统理论方法研究,包括反散射理论,可积系统解的长时间渐近分析,先后主持江苏省自然科学基金青年项目和江苏省高校自然科学研究面上项目,中国博士后科学基金特助和面上项目等研究课题,相关结果发表在JDEPhys. D Stud. Appl. Math, Sci. China-Math等重要期刊。