Solutions and continuum limits to nonlocal discrete sine-Gordon equations: bilinearization reduction method

发布者:王丹丹发布时间:2023-02-23浏览次数:382

学术报告

 

报告题目:Solutions and continuum limits to nonlocal discrete sine-Gordon equations: bilinearization reduction method

报告人:赵松林,副教授,博士生导师

报告时间:20233214:00-15:00

腾讯会议:会议 ID387-266-3917

欢迎全校师生参加!

 

报告摘要:In this talk, we investigate local and nonlocal reductions of a discrete negative order Ablowitz-Kaup-Newell-Segur equation. By the bilinearization reduction method, we construct exact solutions in double Casoratian form to the reduced nonlocal discrete sine-Gordon equations. Then, nonlocal semi-discrete sine-Gordon equations and their solutions are obtained through the continuum limits. The dynamics of soliton solutions are analyzed and illustrated by asymptotic analysis.

 

专家简介:赵松林,浙江工业大学副教授,博士生导师。2012年博士毕业于上海大学应用数学专业。20123-8月曾作为联合培养博士生赴加拿大Brock大学学习。主要研究方向为可积系统及其应用。先后主持国家自然科学基金2项,浙江省自然科学基金一般项目1项。已在Stud. Appl. Math., SIGMA, J. Nonlinear Math. Phys., J. Differ. Equ. Appl., Theor. Math. Phys., Phys. D, Rev. Math. Phys., Chin. Ann. Math. Ser. B, 中国科学:数学等应用数学和数学物理期刊上发表学术论文50余篇。入选浙江工业大学2019年青年英才支持计划和2020年数理青年英才支持计划。