Simplicity of vacuum modules and associated varieties

发布者:蒋娟发布时间:2020-10-19浏览次数:340

学术报告

报告题目:Simplicity of vacuum modules and associated varieties

报告人:姜翠波 教授

报告时间:2020/10/23  9:00-10:00

报告形式:腾讯会议

会议 ID241 249 565

会议密码:666888

报告摘要:We prove that the universal affine vertex algebra associated with a simple Lie algebra $g$ is simple if and only if the associatedvariety of its unique simple quotient is equal to $g*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra. This is a joint work with T. Arakawa and A. Moreau.



报告人简介:姜翠波,上海交通大学特聘教授,博士生导师。研究方向:顶点算子代数及李代数表示理论。迄今为止与合作者在Adv. Math. , Commun. Math. Phys., J. Reine Angew. Math., Trans. AMS., J. Alg.等国际数学期刊发表学术论文五十余篇。曾获上海市自然科学二等奖。