微分方程及动力系统学术报告
报告题目:Orbital stability of the Degasperis-Procesi equation
报告人:李骥 教授,博士生导师
报告时间:2020/10/26 14:30-15:30
报告形式:腾讯会议
报告摘要:The Degasperis-Procesi equation is an approximating model of shallow-water wave propagating mainly in one direction to the Euler equation. Such a model equation is analogous to the Camassa-Holm approximation of the two-dimensional incompressible and irrotational Euler equations with the same asymptotic accuracy, and is completely integrable with the bi-Hamiltonian structure. In the present study, we establish existence and stability of localized smooth solitons to the DP equation on the real line. The spectral stability relies essentially on refined spectral analysis of the linear operator corresponding to the second-order variational derivative of the local Hamiltonian. The orbital stability relies on some tricky L^p controll.
个人简介:李骥,华中科技大学数学与统计学院教授,博士生导师,2008年本科毕业于南开大学数学试点班,2012年在美国杨伯翰大学取得博士学位,后在明尼苏达大学和密西根州立大学做博士后。主要研究几何奇异摄动理论及其应用和相应的随机扰动理论。在TAMS , JMPA,JFA,JDE,DCDS等杂志发表论文十多篇。