Trigonometric Lie algebras, affine Lie algebras, and vertex algebras

发布者:王丹丹发布时间:2020-10-22浏览次数:351

学术报告

报告题目:Trigonometric Lie algebras, affine Lie algebras, and vertex algebras

报告人:王清教授

报告时间:2020/10/259:00-10:00

报告形式:腾讯会议

会议 ID759 602 679

会议密码:666888

报告摘要:We present natural connections among trigonometric Lie algebras, affine Lie algebras, and vertex algebras. More specifically, we prove that restricted modules for trigonometric Lie algebras naturally correspond to equivariant quasi modules for the affine vertex algebra. Furthermore, we prove that every quasi-finite unitary highest weight irreducible module of type A trigonometric Lie algebra gives rise to an irreducible equivariant quasi module for the simple affine vertex algebra. This is a joint work with Haisheng Li and Shaobin Tan.

  

报告人简介:王清,厦门大学教授,博士生导师,主要研究方向是无穷维李代数和顶点代数。在国际重要学术刊物Adv. Math., Comm. Math. Phys., Israel J. Math., J. Algebra等发表SCI论文近30篇,主持国家自然科学基金优青,面上等多项项目。

  

  

报告题目:Whittaker modules for Schrödinger Lie algebras

报告人:张秀福副教授

报告时间:2020/10/2510:00-11:00

报告形式:腾讯会议

会议 ID759 602 679

会议密码:666888

报告摘要:The simple Whittaker modules and singular Whittaker modules over Schrödinger algebra are characterized. Moreover, the simple modules for the Schrödinger algebra which are locally finite over the positive part are completely classified.

  

报告人简介:张秀福,江苏师范大学副教授,博士,硕士生导师。主要研究方向:李代数及其表示理论。目前已在J. Algebra, J. Pure Appl. Algebra, J. Math. Phys., Linear Multilinear Algebra等期刊发表论文20篇,主持或参与完成多项国家自然科学基金面上项目、青年项目、江苏省高校自然科学基金面上项目。