题目:Counterexamples to Jaeger's Circular Flow Conjecture
报告人:张存铨,美国西佛吉尼亚大学
报告时间:6月3日 16:00
报告地点:数A302
内容简介:It was conjectured by Jaeger that {\em every $4p$-edge-connected graph admits a modulo $(2p+1)$-orientation (and, therefore, admits a nowhere-zero circular $(2+\frac{1}{p})$-flow).} Note that Jaeger's conjecture, for $p=1,2$, implies famous $3$-flow and $5$-flow conjectures of Tutte. Jaeger's conjecture was partially proved by Lov\'asz et al.~(JCTB 2013) for $6p$-edge-connected graphs.
In this paper, infinite families of counterexamples to Jaeger's conjecture are presented.
For $p \geq 3$, there are $4p$-edge-connected graphs not admitting modulo $(2p+1)$-orientation; for $p \geq 5$, there are $(4p+1)$-edge-connected graphs not admitting modulo $(2p+1)$-orientation. (Collaboration with Miaomiao Han, Jiaao Li, Yezhou Wu.)
张存铨,美国西弗吉尼亚大学数学系教授、博士生导师、eberly杰出教授,主要研究领域为图论和组合数学、离散优化和生物信息学,是享誉盛名的国际图论专家。张存铨教授1986年从加拿大著名的西蒙菲莎大学获得博士学位,1989年以优异的科研成果被破格提前提升为终身副教授。1996年提升为正教授。他曾独立获得八个美国科技基金会等科研基金,是联邦定期资助的唯一主要研究者,屡次获得校方的最佳科研奖。在《Journal of Combinatorial Theory B》、 《Journal of Graph Theory》等国际著名期刊上发表论文一百余篇。他的专著 《Integer Flows and Cycle Covers of Graphs》 和 《Circuit Double Covers of Graphs》在同行中享有极高的评价。