Trigonometric Lie algebras, affine Lie algebras, and vertex algebras

发布者:王丹丹发布时间:2020-11-16浏览次数:357

学术报告

报告题目:Trigonometric Lie algebras, affine Lie algebras, and vertex algebras

报告人:李海生教授

报告时间:2020/11/20  8:40-9:40

报告形式:腾讯会议

会议 ID699 912 330

  

报告摘要:In this talk, we shall discuss natural connections among trigonometric Lie algebras, (general) affine Lie algebras, and vertex algebras. More specifically, we shall give a realization of trigonometric Lie algebras as what were called the covariant algebras of the affine Lie algebra $\widehat{\mathcal{A}}$ of Lie algebra $\mathcal{A}=\mathfrak{gl}_\infty\oplus\mathfrak{gl}_\infty$ with respect to certain automorphism groups. We then show that restricted modules of level $\ell$ for trigonometric Lie algebras naturally correspond to equivariant quasi modules for the affine vertex algebras $V_{\widehat{\mathcal{A}}}(\ell,0)$ (or $V_{\widehat{\mathcal{A}}}(2\ell,0)$). Furthermore, we determine irreducible modules and equivariant quasi modules for the simple vertex algebra $L_{\widehat{\mathcal{A}}}(\ell,0)$ with $\ell$ a positive integer. This talk is based on a joint work with Shaobin Tan and Qing Wang.

  

报告人简介:李海生,美国Rutgers大学教授、博士生导师,著名华人数学家、顶点算子代数奠基人之一。主要从事Vertex operator algebrasQuantum vertex algebras及相关无究维李代数的重要表示与结构等国际前沿方向研究,在Duke Math. J., Adv. Math., Comm. Math. Phys., Tans. AMS等国际知名权威杂志发表论文90余篇,出版著作1部。