学术报告
报告题目:多分量Camassa-Holm方程的笛卡尔解
报告人:安红利,教授,博士生导师
报告时间:2020年11月18日10:00-11:00
腾讯会议:会议 ID:652 715 736
欢迎全校师生参加!
报告摘要:Here, we give the existence of analytical Cartesian solutions of the multi-component Camassa-Holm (MCCH) equations. Such solutions can be explicitly expressed, in which the velocity function is given by and no extra constraint on the dimension N is required. The advantage of our method is that we turn the process of analytically solving MCCH equations into algebraically constructing the suitable matrix A(t). As the applications, we obtain some interesting results: 1) If u is a linear transformation on , then p takes a quadratic form of X; 2) If A=f(t)I+D with , we obtain the spiral solutions. When N=2, the solution can be used to describe ``breather-type'' oscillating motions of upper free surfaces. 3) If , we obtain the generalized elliptically symmetric solutions. When N=2, the solution can be used to describe the drifting phenomena of the shallow water flow.
专家简介:安红利,南京农业大学教授,博士毕业于香港理工大学应用数学系。长期从事非线性数学物理方程、混沌同步与可积系统方面的研究。曾入选南京农业大学钟山学者——学术新秀,江苏高校“青蓝工程”优秀骨干青年教师。主持有国家自然科学基金面上项目和青年基金项目、江苏省自然科学基金青年基金项目、留学人员科技活动择优资助项目(优秀类)等多项研究课题。多次应邀到澳门大学、香港大学、香港理工大学等进行学术访问与交流。