学术报告
报告题目:The Neyman-Pearson lemma for convex expectations
报告人:嵇少林教授山东大学
报告时间:2020/11/24(周二)10:00-11:00
报告形式:腾讯会议(线上)
会议ID:930 688 200
报告摘要:
We study the Neyman-Pearson theory for convex expectations or equivalent convex risk measures on L^{∞}(μ). Without assuming that the level sets of penalty functions are weakly compact, a fixed representative pair (P, Q) is found by a new method different from the convex duality method. Then we show that the optimal tests are just the classical Neyman-Pearson tests between the representative probabilities P and Q. Finally, we apply our results to a shortfall risk minimizing problem in an incomplete financial market. With Chuanfeng Sun, Jinan University.
报告人简介:
嵇少林现为山东大学金融研究院教授、博士生导师、常务副院长。1971年12月生人,1999年获得博士学位,师从彭实戈院士。1999年至今在山东大学工作。研究领域为机器学习、金融数学、金融经济学、随机优化和非线性期望理论。
近年来,嵇少林与彭实戈院士、美国艺术与科学学院院士Larry Epstein教授、美国哥伦比亚大学周迅宇教授、波士顿大学苗建军教授、英国牛津大学Samuel Cohen教授等合作者在《Review of financial studies》,《Operations research》,《Probability theory and the related fields》和《SIAM Control and Optimization》等杂志上发表了一系列的成果。对金融市场中的学习理论、资本资产定价、随机优化问题和非线性期望理论进行了系统的研究。