Stochastic bifurcation for two-time-scale dynamical system with α-stable Lévy noise

发布者:王丹丹发布时间:2023-06-06浏览次数:168

江苏省应用数学(中国矿业大学)中心系列学术报告

报告题目:  Stochastic bifurcation for two-time-scale dynamical system with α-stable Lévy noise

报告人:袁胜兰助理研究员

报告时间:2023/6/08 10:00-12:00

地点:A310

报告摘要:This work focuses on stochastic bifurcation for a slow–fast dynamical system driven by non-Gaussian α-stable Lévy noise. We prove the main result for the stochastic equilibrium states for the original system and the reduced system based on the random slow manifold. Then, it is verified that the slow reduced system bears the stochastic bifurcation phenomenon inherited from the original system. Furthermore, we investigate the number and stability type of stochastic equilibrium states for dynamical systems through numerical simulations, and it is illustrated that the slow reduced system captures the stochastic bifurcation of the original system. This is a joint work with Zhigang  Zeng and Jinqiao Duan.

报告人简介:袁胜兰,助理研究员。20179月至20188月前往德累斯顿工业大学CSC联合培养博士。20196月获华中科技大学概率论与数理统计专业博士学位。随后加入华中科技大学人工智能与自动化学院从事博士后研究。而后任德国奥格斯堡大学助理研究员职位。研究方向为 Lévy 过程驱动的随机动力系统、量子力学、统计物理和随机分析。近五年在 SIAM Journal on Applied Dynamical SystemsJournal of Statistical Mechanics Analysis and Applications等国际重要期刊上发表 14 篇学术论文。