Orbifold theory and modular extensions

发布者:王丹丹发布时间:2020-12-08浏览次数:464

学术报告

报告题目:Orbifold theory and modular extensions

报告人:董崇英教授

报告时间:2020/12/13  9:00-10:00

报告形式:腾讯会议

会议 ID608 831 266

  

报告摘要:Orbifold theory studies  a vertex operator algebra V under the action of a finite automorphism group G.  The main objective is to understand the module category of fixed point vertex operator subalgebra V^G. We show that the module category of V^G can be understood in terms of the third cohomology group of G with coefficients in the unit circle if V is a nice vertex operator algebra. The idea is to establish a connection between  the V^G-module category and modular extensions of G-module category. On the other hand, the modular extensions of G-module categories have been classified using the twisted Drinfeld  quantum doubles of G in category theory. This talk will explain how to use the results on modular extensions  by Drinfeld-Gelaki-Nikshych-Ostrik and Lan-Kong-Wen to study the module category of V^G. This is a joint work with Richard Ng and Li Ren.

  

报告人简介:董崇英,美国加州大学Santa Cruz分校教授。主要研究顶点算子代数和无穷维李代数。在顶点算子代数、Orbifold理论以及广义月光猜想等方面做出了重要的工作,是国际学术领域公认的顶点算子代数领域最有影响力的学者之一。