Evolution of initial discontinuity for the integrable nonlinear wave equations

发布者:王丹丹发布时间:2020-12-14浏览次数:455

学术报告

  

报告题目:Evolution of initial discontinuity for the integrable nonlinear wave equations

报告人:王灯山,教授、博士生导师

报告时间:2020121419:00-20:30

腾讯会议:会议 ID558 352 851

欢迎全校师生参加!

  

报告摘要:The classification of solutions to the integrable nonlinear wave equations with discontinuous initial data is considered by Whitham modulation theory. We first report our work on the complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition. Then introduce our recent exploration on the Jaulent-Miodek equation with step-like initial data. It is noted that the direct numerical simulations of the defocusing cmKdV equation and Jaulent-Miodek equation are agreed well with the solutions corresponding to Whitham modulation theory, which verifies the validity of results from Whitham modulation theory.

  

专家简介:

王灯山,北京师范大学数学科学学院,教授、博士生导师。主要从事可积系统和渐近分析方面的研究,主持国家自然科学基金面上项目等国家级和省部级项目10余项,参与获得北京市科学技术奖一等奖。