复杂网络的结构鲁棒性:相变、标度关系与多相依属性

发布者:王丹丹发布时间:2020-12-16浏览次数:568

中国矿业大学数学学院“卓越学者论坛”

报告题目:复杂网络的结构鲁棒性:相变、标度关系与多相依属性

报告人:董高高副教授

报告时间2020/12/18 16:30-17:30

报告形式:腾讯会议(ID875 719 835

  

报告摘要:着物联网应用的铺开、智慧城市进程的加快以及移动互联网的全面普及,各类关乎国计民生的数据量与时俱增。这些海量数据呈现出多源异构、分布广泛、动态增长等诸多特点,并从不同角度清晰地表明各系统正处于相互关联、动态演化、耦合依存的复杂大网络系统中。该报告从复杂网络的结构鲁棒性出发,提出一类研究社团结构的复杂网络的抗毁性的数学框架模型,研究发现社团间的相依边和相依点比例的变化,能够使得在单一社团网络中能够发生的连续相变消失,使得系统变得稳定。进一步,研究表明社团间的相依边与铁磁效应中的外场作用相似。借助这一外场效应,定义了临界相变点的两类临界指数,并发现,其遵循普适性Wisdom定律。此外,基于网络的渗流理论,提出了网络系统中一类信息有限的网络目标免疫参考策略,假设每次从网络中观察n个节点的信息,然后将其中度值最高的节点免疫,按照这种策略对网络中的一部分节点进行免疫。基于理论解析和数值模拟,我们发现:与随机选择个体为目标相比,即使每次调查的个体数量在10人左右,也有可能显著降低疾病大流行的概率。此外,对于不同的n, 我们还发现了最大连通边与在临界阈值处之间的一类新型标度指数,并进行具体的解析和分析。最后,对多相依结构下结构网络的最拓扑结构,提出一类数学解析框架。

  

专家介绍:董高高,江苏大学与美国波士顿大学联合培养博士, 副教授、博导,江苏省高校优秀青年骨干教师。主要从事复杂网络理论及应用方面的研究,同合作者共发表研究论文40余篇(SCI检索),部分研究工作被PNASNational Science Review等期刊收录,合著3本专著。