学术报告
报告题目: Chvátal-Erdӧs Conditions and Almost Spanning Trails
报告人:赖虹建教授(美国西弗吉尼亚大学)
报告时间:2020/12/23(周三) 08:30-09:30
报告形式:腾讯会议(线上)数学学院A303(线下)
会议ID:320 292 682
报告摘要:The well-known Chvátal-Erdӧs Theorem on hamiltonian graphs states that if the stability number α(G) and the connectivity (G) satisfy the condition
(G) ≥α(G) + s,where s
{-1, 0, 1},then G has a Hamilton path if s = -1,a Hamilton cycle if s = 0 and G is Hamilton-connected if s=1.There have been many efforts to generalize the Chvátal-Erdӧs Conditions and similar conditions in graph theory. We will present some of these extensions. In particular,we will share the ideas of our effort to extend the Chvátal-Erdӧs Theorems within the family of all line graphs.
报告人简介:赖虹建,美国西弗吉尼亚大学终身教授、博士生导师。其主要研究工作包括:图论和拟阵论中的欧拉子图问题、哈密顿圈以及哈密顿性问题、整数流问题、等密拟阵和等密网络问题、图论中的染色问题和连通度问题,出版学术著作两部,在J. of Combinatorial Theory, Series B,Applied Mathematics and Computation 、Journal of Graph Theory 、Discrete Applied Mathematics等核心杂志上发表学术论文250余篇。